DOE Peer Review Washington, DC

Packaged Cooling, Heating & Power Systems for Buildings

December 2003

Rod Schwass, BCHP Project Director
Burns & McDonnell

Agenda

- Burns & McDonnell Team Overview
- Project Background
- Project Approach
- Project Site Overview
- Project Goals and Objectives
- BCHP Economic Analysis Model
- Project Schedule and Key Milestones

Burns & McDonnell

Program Manager

- Integrated design-build company
- 100% employee owned over 1,700 employees
- More than 100 years expertise with energy generation projects
- 20 regional offices projects worldwide

Solar Turbines Incorporated

Industrial Turbine Manufacturer

- Leading U.S. supplier of industrial gas turbines ranging from 1 to 13 MW
- Proven technology with strong technical, research & development expertise
- Headquartered in San Diego with a global presence

Broad USA, Inc.

Absorption Chiller Manufacturer

- Worlds largest manufacturer of absorption chillers
- 1,200 units annually = over 500,000 tons with more than 6,000 units in operation
- The only dedicated manufacturer of absorption chillers with a 3.3 million ft² manufacturing facility
- Proven track record with the DOE

Austin Energy Owner/Local Municipality

- Nation's 10th largest communityowned electric utility
- 360,000 customers
- 2,600 MW of total generation
- Very active renewable energy and energy efficiency programs

Turbine Air Systems

System Packager

- Experienced Packaged Chiller Plant Equipment for the Power Industry
- Over 100 Systems Installed with a Combined Capacity Near 250,000 Tons
- Modular, Compact & Portable
- Complete System Chillers, Cooling Towers, Pumps, Electrical Motor Controls Centers and DDC Controls

Statement of Work

Packaged and modular systems development focuses on innovative integration of on-site/near-site power generation and thermally activated systems to be incorporated into individual buildings.

Key Technical Areas

- Thermally activated technologies
 - Absorption cooling
 - Thermal heating
 - Humidity controls
- Onsite power technology
- Controls development
- Systems integration

Targeted Market

- Commercial buildings
- Institutional buildings
- Government facilities
- District energy systems that distribute thermal energy to:
 - College campuses
 - Hospital complexes
 - Industrial parks
 - Commercial campuses

Project Intent

- By combining existing proven technologies...
 - Determine if our approach is better than existing configurations
 - Determine the optimum configuration of the system
 - Develop a method to size a system for a specific load profile

Original System Concept

- Low emission gas turbine generator
- Two-stage co-gen absorption chiller using turbine exhaust
- Two-stage co-fired absorption chiller using natural gas and turbine exhaust
- Provide electricity, chilled water, and hot water

Project Approach

Site Selection Process

Site	Location	Score
Brooks AFB	San Antonio	483
UT Health Science	San Antonio	483
UT San Antonio	San Antonio	482
University of Iowa	Iowa City	473
Naval Med Center	San Diego	427
Carnegie-Mellon	Pittsburgh	355
Bunker Hill CC	Boston	307
North Island	San Diego	267

Project Approach

- Install IES in Austin, TX as part of The Domain
- Owner/Operator will be Austin Energy
- Integrate IES into existing chilled water system
- Interconnect to local substation with the ability to feed the electric grid

Original Concept Diagram

Current System Diagram

Current System Elevation

Gas Turbine Exhaust & Indirectly-Fired Absorption Chiller

Solar Turbines – Centaur 50

• Nameplate: 4.6 MW

• Exhaust: 950 °F

• Heat Rate: 11,630 LHV

• Low NOx: 15 ppm

- Co-Gen Absorber
 - 2,500 Tons
 - Fuel: Turbine Exhaust

- Packaged Systems Include:
 - Natural GasCompressor Skid
 - Inlet Air FilterModule
 - Process ControlsSkid
 - Exhaust Stack

Proposed Controls Integration

- Austin Energy Domain Plant Has An Existing BACS
- Solar Turbine Has PLC Based Controls
- Broad Chiller PLC Based Controls
- Turbine Air System will Integrate PLC Based Controls Systems to the Existing Domain Plant BACS

Space Between Bldg 59 and Bldg 62

Manholes in Substation for Tie-In Point

Building 59 Layout

Goals and Objectives

- Energy uses for prototype system:
 - Electricity to local area and electric grid
 - Chilled water for air conditioning
 - Chilled water for inlet air cooling for gas turbine
- Anticipated efficiency > 70%
- Potential efficiency > 80%
- Savings through efficiency

Goals and Objectives

- 2,500 tons of co-gen cooling from generator exhaust that does not require additional fuel input
- Develop solutions for integration with building control systems
- Develop grid interconnection procedure with Austin Energy

Goals and Objectives

- Educational benefits through collaboration with The University of Texas School of Engineering
- Integrated control system that will allow ease of operations and remote monitoring
- Modular design will be adaptable to meet various capacity requirements and space limitations

Project Risks

- Economics
 - IES efficiency compared to traditional approaches
 - Must run turbine to get cheap cooling
 - Volatile natural gas market

Technical Issues

- Chilled water supply temperature
 - Issue: Absorber designed to operate most efficiently at a minimum chilled water supply temp of 44 degrees F. May be a need in the future to supply chilled water at a temp below 44 degrees F.
 - Strategy: Design will incorporate an alternate operational mode to provide precooling.

- Uses Multiple Standard Inputs
- Allows Initial Evaluation of On-Site Energy Systems Based on Minimal Information
- Allows for Rapid What-If Evaluation of Alternates
- Built In Sensitivity Allows for Significant Variations

- Schedule of Generator Hours of Operation
- Models Combination of Chiller Types
- Accounts for Turbine Inlet Air Cooling
- Site-Specific Weather Bin Data
- Impact of Temperature Setbacks

- Impact of Thermal Energy Storage
- Includes Various Escalations
- Calculates Annual Expenses, Annual Revenues, and Includes Investment Cost with or Without Salvage Value
- Accounts for Tax Impact
- Incorporates Financing Options

- Calculates Annual Cash Flow, NPV and IRR
- Provides Graphical Sensitivity Results for Range of NG Cost, Electricity Cost and Investment Cost

Sample Model Output

Sample Model Output

EXECUTIVE SUMN		IAIL	-						
	Base Case								
INCOME ANALYSIS	20 Years	NPV							
Revenue									
Electric	\$7,196,403	8	st \$0.055/k/Wh	and	3.0%	escalation every 5 years			
Chilled Water	\$15,166,230	6	t \$0.138/Ton-l	Hr and	2.5%	escalation annually			
Boiler Fuel Savings*	\$0								
Total Revenue	\$22,362,633	а	t \$0.005/kWh	and	2.0%	escalation annually			
Expenses		а	t \$0.006/Ton-l	Hr and	2.5%	escalation annually			
Engine Generator O&M**	\$901,577	а	t \$4.35/mmBt	u and	3.0%	escalation annually	and	0.0%	gas sensitivity
Chiller O&M	\$634,039	а	t \$0.055/k/Vh	and	3.0%	escalation every 5 years			
Gas Expense - Eng. Gen.	\$10,381,310	а	t \$4.35/mmBt	u and	3.0%	escalation annually	and	0.0%	gas sensitivity
Elec Exp - Elec & BCHP Chillers									
Gas Expense - DFA			IND	Chiller Capa	city, Tons	1,000			
Insurance & Other Expenses	\$0			Chiller Capa					
Total Expenses	\$13,907,232		Average Elec (
				ak Central F					
Net Income	\$8,455,401	Peak	Central Plant I						
CASHFLOW ANALYSIS			Annual %	I Hilization	√FBCHP	67.17%			
Net Income	\$8,455,401	+							
Depreciation		-	Annual System Efficiency IES Efficiency per Hour						
Interest Payment		+	IES	Efficiency	pei noui	14.55%		-	
Taxable Income		-	Annual Ton Ho	um Coolin	- Evictica	6,289,998		-	
Income Tax		-						-	
		-	Annual Ton H						
Principle Payment		\vdash		Hours Coo				-	
Investment and Salvage	[20]	-	Annual Ton H			5,883,678			
Equity	\$0		Annual Ton H	lours Electr	c Cooling	1,614,153			
Net Cashflow Before Taxes	\$8,455,401		Elec net ki	W peak exp	ort to grid	0			
Net Cashflow After Taxes - Debt		Annu	Annual kWh Produced by G.Turbine Gen.			10,571,742			
Net Cashflow After Taxes - Equity									
		A	Annual Heating MMBtu Savings Total			0			
NPV After Pay Investment	\$2,455,401		ess Heating as						
IRR Before Taxes		a	t 5.50% dscnt	rate					
IRR After Taxes (Debt)	N.A.								
IRR After Taxes (Equity)	N.A.		Del	bt to investr	nent Ratio				
				Income Ta	ax Rate %	0.00%			
Payback Years	9.75			nnual Intere		0.00%			

Project Schedule and Key Milestones

Completed:

- Site selected for project January 2003
- Installation cost estimate March 2003
- D/B Contract August 2003
- Site mobilization September 2003
- Commence final design September 2003
- Task 2 Report submitted November 2003

Project Schedule and Key Milestones

Planned:

- System design complete Dec 2003
- Turbine & Chiller installed Feb 2004
- BOP & Controls installed April 2004
- Installation complete May 2004
- Commissioning June 2004
- Testing complete Fall 2004
- Submit final report December 2004

Expanding the BCHP Team

Collaborating Organizations

- The University of Texas, School of Engineering
- The University of Texas, LBJ School of Public Affairs

Summary

- Expect a strong positive impact on the BCHP program:
 - On track to meet DOE program goals
 - Cost share 64% of total cost
 - Opportunity to address significant utility-related issues
 - Design will be replicable
 - Design can be sized for different applications
 - System has potential for widespread commercial implementation

Thank You For Your Interest In Our Project

